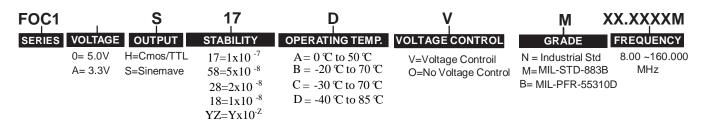
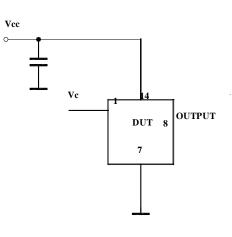
Micro-miniature OCXO

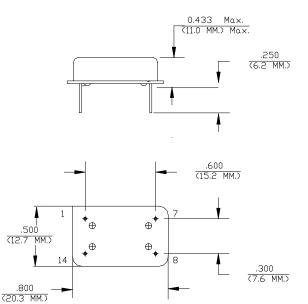
Features

- Low Cost DIL 14 package
- High Vacuum Sealed Crystal
- Low Power Consumption (500 mW)
- Fast Warm-up Time (2 minutes)
- Stratum3 or better Stability
- Low Aging < 3 ppm over life
- Very Low Phase Noise (-160dBc/Hz TYP)
- HCMOS/TTL or Sine-Wave output
- 8 MHz to 160 MHz Frequencies Available
- Voltage Control Optional
- Good Performance
- COTS/Dual use


Applications

- Telecommunications
- Data Communications


Series | FOC1


- Instrumentation
- Military/Space

Part Numbering Example: FOC1FS17DVM - XX.XXXX M

Not all combinations are available. Consult Factory

ALL DIMENSIONS ARE TYPICAL UNLESS OTHERWISE NOTED

Pin Out Pin 1- Vc: Pin 7- Case GND: Pin 8 - Output: Pin 14 - Vcc	Electrical Connections	
The Out The Tease, OND, The Output, The Tease, Ond, Tease, Ond	Pin Out	$1 \text{ III } 1^{-1} \text{ VC}, 1 \text{ III } / ^{-1} \text{ Case, OIND, 1 III0} = Output, 1 \text{ III } 1^{-1} \text{ VC}$

FRE Electronics Technologies Inc. www.fretechs.com sales@fretechs.com

FRE TECHNOLOGIES

Micro-miniature OCXO

Series FOC1

Specifications:

Parameter	Symb	Condition	Min	Тур	Max	Unit	Note		
Absolute Maximum K	, v					1	•		
Input Break	Vcc		-0.5		5.5	V	3.3V or 5V V	Vcc	
Down Voltage			-0.5		13		12 V Vcc		
Storage temper.	Ts		-40		85	C			
Control Voltage	Vc		-1		6	V			
Electrical									
Frequency	F		8	10.000	160	MHz	1*		
Frequency stability	ΔF/F	vs. Temp.		±100	±280	ppb	See chart below		
		vs. Supply		10	50	ppb/V			
Aging		per day		5E-9			after 30 days	И	
		first year		3E-7				ΗМ	
		15 years			3E-6			101	
Allan Variance		.1s to 100s		5E-11				or	
Calibration		No voltage control		± 0.5	±2	ppm		rs f	
Vcc sensitivity				5E-8/V				etei	
Load sensitivity		For 10% change			5E-8			All parameters for 10 MHz	
SSB Phase Noise		10 Hz		-100		dBc/Hz	2*	par	
		100 Hz		-130				٩II	
		1 KHz		-145				1	
		>10 KHz		-160	100				
Retrace		After 30 minutes			±100	ppb			
G-sensitivity		worst direction			±2.0	ppb/G			
Input Voltage	Vcc		4.75	5.0	5.25	V	See chart bel	ow	
			3.15	3.3	3.45				
D (Р		11.4	12.0	12.6 0.7	W	TT	•	
Power consumption	Р	steady state, 25 ℃ steady state, -30 ℃		0.5	0.7	w	Upper operat temperature < 70		
		steady state, -50 C			2.5		20% for UOT		
Load		10KOhm	//15nF		2.5		CMOS Output		
Luau						Sine-wave ou			
Warm-up time	т	to 0.3 ppm accuracy	upieu 50	2	3	min		iput	
Sub-Harmonics				-50	-40	dBc	At higher F	At higher F 1*	
Output Waveform		3.3V HCMOS/TTI	L compat	ible, 4 ns	Tr/Tf. 40/	60% duty cvicle	See chart bel		
		3.3V HCMOS/TTL compatible, 4 ns Tr/Tf, 40/60% duty cyicleSee chart belowSine-wave, + 7 dBm ±3 dBm into 50 Ohm, -30 dBc harmonicsSee chart below							
Control voltage	Vc	,	0		4.0	V	1		
Pull range		from nominal F	±5	±10		ppm	Customer specified		
Deviation slope		Monotonic, posit		5		ppm/V	Customer specified		
Setability	Vc0	@25 °C, Fnom.	1.0	2.0	3.0	V	5V/3.3 supp	5V/3.3 supply	

Environmental and Mechanical

Operating temp. range	-30 $^{\circ}$ C to 70 $^{\circ}$ C Standard, Other options – see chart below
Mechanical Shock	Per MIL-STD-202, 30G, 11ms
Vibration	Per MIL-STD-202, 5G to 2000 Hz
Soldering Conditions	Leads Temperature 260 °C, for 10s, Max
Hermetic Seal	Leak rate less than 1x10 ⁻⁸ atm.ccm/s of helium

Notes:

1* Higher frequencies can be achieved either by using higher frequency crystals or by low noise analog harmonic multiplication. Both methods have advantages and drawbacks. If lowest possible phase noise on the noise floor is most important – high frequency crystal will be used. If phase noise close to the carrier and aging are more important – multiplication will be used. Please consult factory for your specific requirement.

2* Phase noise deteriorates with frequencies going higher. If analog multiplication is used to achieve higher frequency the phase noise roughly follows the formula of additional 20LogN, where N is a multiplication factor across entire frequency offset range. If higher frequency is achieved by using higher frequency crystal phase noise close to the carrier deteriorates due to the lower Q of the crystal and is usually worse, compared to multiplied solution. On the noise floor, however it remains more or less the same.